Requirements: Python(version >= 3.6) pytorch(version>=1.4.0) ordered_set(version>=3.1) numpy(version>=1.16.2) torch_scatter(version>=2.0.4) scikit_learn(version>=0.21.1) We highly recommend you to use conda for package management. Model Training: 1)Create a folder "test_data" under folder "data" and move training data, valid data, and test data to the folder. 2)Use the following command to train the model, the model will be named as "test_model" and saved in the directory "model_saved". python main.py -data test_data -gpu 1 -name test_model -epoch 500 Drug-Disease Predicting: 1)Create a test file named as "ad_pre.txt" and moved the file to the folder "test_data". 2)Run the following command, predicting results will be saved in the file "pre_results.txt". python test.py -data test_data -gpu 1 -name test_model -save_result pre_results.txt -test_file ad_pre.txt Parameter Note: -data the directory of training and testing data -gpu the GPU to use -name the name of the model snapshot (used for storing model parameters) -epoch the number of epochs -save_result the filename that is used to store test results -test_file the name of testing file